3.15.9 \(\int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx\) [1409]

Optimal. Leaf size=63 \[ \frac {2 \sqrt {e} E\left (\left .\sin ^{-1}\left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right )\right |-1\right )}{d}-\frac {2 \sqrt {e} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right )\right |-1\right )}{d} \]

[Out]

2*EllipticE((d*e*x+c*e)^(1/2)/e^(1/2),I)*e^(1/2)/d-2*EllipticF((d*e*x+c*e)^(1/2)/e^(1/2),I)*e^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {704, 313, 227, 1213, 435} \begin {gather*} \frac {2 \sqrt {e} E\left (\left .\text {ArcSin}\left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right )\right |-1\right )}{d}-\frac {2 \sqrt {e} F\left (\left .\text {ArcSin}\left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right )\right |-1\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c*e + d*e*x]/Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2],x]

[Out]

(2*Sqrt[e]*EllipticE[ArcSin[Sqrt[c*e + d*e*x]/Sqrt[e]], -1])/d - (2*Sqrt[e]*EllipticF[ArcSin[Sqrt[c*e + d*e*x]
/Sqrt[e]], -1])/d

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 313

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Dist[-q^(-1), Int[1/Sqrt[a + b*x^4]
, x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 704

Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(4/e)*Sqrt[-c/(b^2 - 4*
a*c)], Subst[Int[x^2/Sqrt[Simp[1 - b^2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 1213

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + e*(x^2/d)]/Sqrt
[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx &=\frac {2 \text {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {x^4}{e^2}}} \, dx,x,\sqrt {c e+d e x}\right )}{d e}\\ &=-\frac {2 \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{e^2}}} \, dx,x,\sqrt {c e+d e x}\right )}{d}+\frac {2 \text {Subst}\left (\int \frac {1+\frac {x^2}{e}}{\sqrt {1-\frac {x^4}{e^2}}} \, dx,x,\sqrt {c e+d e x}\right )}{d}\\ &=-\frac {2 \sqrt {e} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right )\right |-1\right )}{d}+\frac {2 \text {Subst}\left (\int \frac {\sqrt {1+\frac {x^2}{e}}}{\sqrt {1-\frac {x^2}{e}}} \, dx,x,\sqrt {c e+d e x}\right )}{d}\\ &=\frac {2 \sqrt {e} E\left (\left .\sin ^{-1}\left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right )\right |-1\right )}{d}-\frac {2 \sqrt {e} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right )\right |-1\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.03, size = 40, normalized size = 0.63 \begin {gather*} \frac {2 (c+d x) \sqrt {e (c+d x)} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};(c+d x)^2\right )}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c*e + d*e*x]/Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2],x]

[Out]

(2*(c + d*x)*Sqrt[e*(c + d*x)]*Hypergeometric2F1[1/2, 3/4, 7/4, (c + d*x)^2])/(3*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(117\) vs. \(2(51)=102\).
time = 0.74, size = 118, normalized size = 1.87

method result size
default \(\frac {\sqrt {e \left (d x +c \right )}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}\, \sqrt {-2 d x -2 c +2}\, \sqrt {d x +c}\, \sqrt {2 d x +2 c +2}\, \EllipticE \left (\frac {\sqrt {-2 d x -2 c +2}}{2}, \sqrt {2}\right )}{d \left (d^{3} x^{3}+3 c \,d^{2} x^{2}+3 c^{2} d x +c^{3}-d x -c \right )}\) \(118\)
elliptic \(\frac {\sqrt {-e \left (d x +c \right ) \left (d^{2} x^{2}+2 c d x +c^{2}-1\right )}\, \sqrt {e \left (d x +c \right )}\, \left (\frac {2 c e \left (-\frac {c +1}{d}+\frac {c -1}{d}\right ) \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \EllipticF \left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )}{\sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d x e +c e}}+\frac {2 d e \left (-\frac {c +1}{d}+\frac {c -1}{d}\right ) \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \left (\left (-\frac {c -1}{d}+\frac {c}{d}\right ) \EllipticE \left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )-\frac {c \EllipticF \left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )}{d}\right )}{\sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d x e +c e}}\right )}{\left (d x +c \right ) \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}\, e}\) \(589\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^(1/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(e*(d*x+c))^(1/2)*(-d^2*x^2-2*c*d*x-c^2+1)^(1/2)*(-2*d*x-2*c+2)^(1/2)*(d*x+c)^(1/2)*(2*d*x+2*c+2)^(1/2)*Ellipt
icE(1/2*(-2*d*x-2*c+2)^(1/2),2^(1/2))/d/(d^3*x^3+3*c*d^2*x^2+3*c^2*d*x+c^3-d*x-c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^(1/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x*e + c*e)/sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.43, size = 37, normalized size = 0.59 \begin {gather*} \frac {2 \, \sqrt {-d^{3} e} {\rm weierstrassZeta}\left (\frac {4}{d^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right )}{d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^(1/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(-d^3*e)*weierstrassZeta(4/d^2, 0, weierstrassPInverse(4/d^2, 0, (d*x + c)/d))/d^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {e \left (c + d x\right )}}{\sqrt {- \left (c + d x - 1\right ) \left (c + d x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**(1/2)/(-d**2*x**2-2*c*d*x-c**2+1)**(1/2),x)

[Out]

Integral(sqrt(e*(c + d*x))/sqrt(-(c + d*x - 1)*(c + d*x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^(1/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*x*e + c*e)/sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\sqrt {c\,e+d\,e\,x}}{\sqrt {-c^2-2\,c\,d\,x-d^2\,x^2+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^(1/2)/(1 - d^2*x^2 - 2*c*d*x - c^2)^(1/2),x)

[Out]

int((c*e + d*e*x)^(1/2)/(1 - d^2*x^2 - 2*c*d*x - c^2)^(1/2), x)

________________________________________________________________________________________